#..... | Number | Divided by 36 Harmonic | N*Wad/54 | Sub-harmonic /36/2**2 | |
1 | 1 | 0.027777777777777776 | 5 | 0.006944444444444444 | "Harmonic for each electron"- Cathie. |
2 | 7 | 0.19444444444444445 | 35 | ||
3 | 19 | 0.5277777777777778 | 95 | ||
4 | 37 | 1.0277777777777777 | 185 | 0.2569444444444444 | |
5 | 61 | 1.6944444444444444 | 305 | Cathie harmonic of proton or electron. Or something about "Wavelength and Kinetic Energy" described below. Light wavelength 238 nm* | |
6 | 91 | 2.5277777777777777 | 455 | ||
7 | 127 | 3.5277777777777777 | 635 | Seem this would be 128 as in S.R. | |
8 | 169 | 4.694444444444445 | 845 | And Perhaps related to the Electromagnetic.(unlikely) | |
9 | 217 | 6.027777777777778 | 1085 | 1.5069444444444444 | |
10 | 271 | 7.527777777777778 | 1355 | ||
11 | 331 | 9.194444444444445 | 1655 | ||
12 | 397 | 11.027777777777779 | 1985 | 2.756944444444444 | |
13 | 469 | 13.027777777777779 | 2345 | 3.256944444444444 | |
14 | 547 | 15.194444444444445 | 2735 | ||
15 | 631 | 17.52777777777778 | 3155 | ||
16 | 721 | 20.02777777777778 | 3605 | 5.00694444444444 | |
17 | 817 | 22.694444444444443 | 4085 | ||
18 | 919 | 25.52777777777778 | 4595 | ||
19 | 1027 | 28.52777777777778 | 5135 | ||
20 | 1141 | 31.694444444444443 | 5705 |
Percolation Threshold and previous integrals from
(sqrt(((n/3)*(n*5)/2)*2.9))/n.
We computed all of the integers from integration of the above formula and most matched something like in the title in the wolfram mathematica
notebook here.
There are some stuff not included here.
1.55456 | Pc (diamond bond) + 7/6 | Exact value |
3.10913 | 2pc (diamond bond) + 7/3 | Exact Value |
4.66369 | (8Pc(simple cubic bond)/3)+4 | 4.66346666 |
6.21825 | (7pc(Honeycomb site)/4)+5 | Exact value |
7.77282 | (30Pc(BCC Bond)/7)+7 | 7.77271428 |
9.32738 | 24Pc(BCC BOND)+5 | Exact Value |
10.8819 | 10Pc(Diamond Bond)+7, 20Pc(6D Bond)+9 | Exact and 10.8840000 |
12.4365 | Pc(diamond site)+12 | 12.4300000 |
13.9911 | nothing | |
15.5456 | nothing |